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SECTION I

INTRODUCTION

- In many practical configurations of multiconductor

transmission lines , as encountered in the study of electro-

magnetic pulse (EMP) internal interaction problems , the

conductors are covered by thin dielectric jackets. The

associated propagation modes (ref. 1) are thus approximately

degenerate and can be understood by studying the propagation

problems of multiconductor transmission lines in homogeneous

media. —

Of particular interest are the studies of electromagnetic

coupling among the conductors (or lines) , which would

• reveal how the energy on one line affects another. In this

• report, we study the coupling problem of an (n+l)-conduc tor

uniform transmission line irnbedded in a homogeneous medium .

I 
The (n+l)~~

t conductor is referred to as the reference con-

ductor (usually a ground plane or the overall shield) . The

special case n = 2 will be studied in detail.

a The voltages and currents along the lines for a

given set of termination conditions are expressed in terrs

of reflection matrices . This formulation , as repor ted

in Section II, enables one to observe the effects of

terminations on the coupling among the lines. The special

cases of three conductor lines are presented in Section III.

F inally , we show that in the case of weak coupling among

two parallel lines , the effect of one line can be represented

- - by equivalent generators on the other line .
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SECTION II U

GENERAL FORMULATION

In this section , expressions for line voltages

and currents on an (n+l)-conductor transmission line

immersed in a homogeneous medium are derived . Two

specific sets of termination conditions are used ; one

involves driving the conductors at one end by voltage

sources through an impedance network , whereas the other

involves driving by current sources through an admittance

network. Specialization of the results to the three-

conductor transmission line case is presented in

Section III.

The starting point of the derivation is the familiar

set of 2n transmission line equations in matrix form for

the voltage vector ~~(z) and current vector r(z) at

a position z, viz.:

• 
~~~~ 

C;:::] = -s [~ ] C;:::] 1

where s is the complex frequency , ~ is the nxn zero

~ matrix , ~ and ~ are respectively the per-unit—length

:1

_
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inductance matrix and the per-unit-length capacitance
I

matrix . Both L and C are nxn square matrices .

It is to be noted that the matrix ~ = [C~~ ] is defined

so that

= ç’ c .  • V . i=1 ,2,.. .
] 1... 1J J

j=l

where is the charge on l ine  i anr1. V
1 

is the potential

of line j with respect to the reference conductor . (‘tften

(ref. 2) 
~~~ 

is called the coeffic ient of self—capacitance

and C.~ , i 
~ 

j ,  is called the coefficient of inductance.

For a homogeneous medium , it can be shown (refs. 3 ,

4) that

(2)

where v is the speed of light in the medium and is

the nxn unity matrix , i.e., a diagonal matrix with all

diagonal elements being 1. Equation (2) indicates that

the eigenvalues of the square matrix in (1) are degenerate.

Differentiating (1) with respect to z yields

4F~~~~~~~~~

] 

= •( 2 1~~ 1 (3)
dz L I ( z )  L I ( z ) J

where the propagation constant is given by

_ _  
~~~~~~~~~~ -• - -~~~~~~~~~~~~~~ ±._ _ ~~~--—-•-— ~~~~~~~~~~~~~~ -- -~~~~~



Y s/v

The solution of the second equation in (3) can be expressed

in terms of two travelling waves , viz.,

I(z) = e ’
~ T~ + e’~~ Y~~ (4)

where the amplitude vectors Y~~ an d 1 are determined

from termination conditions. Substituting (4) in (1)

we obtain

V (z) = 

~o (e~~~ ~
+ - e’

~~ ~~) (5)

where is the characteristic impedance matrix (ref. 1)

and is given by

~~
‘ 

~~~~~~~~~ (6)
a 0 V

1. Voltage—Driven Lines

Let us assume that the lines are driven by a

voltage source array 
~~ 

at z = 0 through an impedance

network i~~ , and are terminated at z ~ by another

imped.~nce network . These termination conditions are

depictec in Figure 1 and are described by

8
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LINE I

— 

L I N E 2

: LINE n

z = O  REF. CONDUCTOR

a

F i g u r e  1. V o l t a g e — d r i v e n  (n + l ) — c o n d u c t o r
transmission lines .
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V(0) = V - I ~ (0)5 S

• 

- 

(7)

V ( Z ) = i~~ 1 ( Q )

Solution of (4) and (5) together with (7) yields

V(z) = I
~~ [e

’
~~ ~ 

+ e~~~~~~
2
~~ ~

,] [
~ 

- e~~~ ~ ~~

+ 
...
j~~

l 

~~

Y ( z )  = {e
’
~~ ~ 

- e~~~~~~
2
~~ ~

} 
- e~~~~

’
~ ~~

r —  _~~~ lI z  +~~~I ~7 ( 8 )I. 
~ S

where the reflection matrices at the source end
S

and at the load end ~~ are given by

a 
= + ~~~~~ ~~ 

-

(9)

= + ~~~ —l 
~~~ 

- 

~ o ]

For m ult i c o n d u ct o r  t r a n s m i s s i o n  l ines , is

u s u a l l y  a f u l l , asymmetr ic  m a t r i x .  Hence , in general ,

~ ‘ an d are  not  d i a g o n a l  m a t r i c e s .  Th i s

10
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fact implies that V(z) is related to by a full

matrix and hence cross-coupling occurs , i.e., the voltage

source on one line causes induction of voltages on all

other lines . Similarly , the current 1(z) is also

coupled to Q~~~~. One exception is the condition that the

lines are perfectly terminated , i.e., = = 0, or5
= 

~~~~~ 

(th i s  demands all interconductor elements

of the source and load impedance networks match the

corresponding ones of the characteristic impedance) , t h e n

~7(z) = ~ e~~ Z

(10)

Y ( z )  = e~~~ ~~~ 
•

1

Equation (10) states that under the matched condit ion ,

the line voltages are not cross-coupled to the driving

voltage sources , whereas the currents are . This situation j
can be expla ined from a c i r c u i t - t h e o r y  p o i n t - o f - v i e w.

Such an explanation for a three—wire line is presented
•

in Sec tion III.

Equat ion  ( 10)  po in ts  to the condi t ions  of producing

pure voltage modes when each conduc tor is exci ted by a

voltage source connecting the conductor to the reference

conductor . When the lines are perfectly matched at both

11
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ends, no cross-coupling of voltages Occur. However , cross-

coupling occurs if discontinuities exist along the line

or at the two terminating ends. We observe also that pure

- 

- - 

current modes are not excited by this type of source

arrangements .

2. Current-Driven Lines

Here we assume that the l~ nes are dr i v en  by a

current source array 
~~ 

th~ o h  ~ n admittance network

~ 
at z = 0 and are t e r m i n a te d  by an ad m it tance 1~

at z = i. This arrancement ~s iep~cted in Figure 2.

In this case , we h a v e

k 
‘

~

V (0) = 1 ( 0 ) ]

(11)

~~( Z )  = 1 ( Z )

Solution of (4) and (5) together with termination conditions

of equation (11) yields

~~(z) ~0[e~~~ 
~ 

+ e~~~~~
2
~~ ~~

] N - e 2
~~ ‘ s ? ]

{ ~~
— l ÷ ~~~~~ ~~~

12
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L. LINE 2

— —  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

LINE n

i .€ i+~ + 

- 

_ _ _ _ _

z~~O REF. CONDUCTOR z~~~J

0 

-

Figure 2. Current—driven (n+l)-conductor
transmission lines.
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Y ( z )  = [e~~
’ Z ff — e~~~~~

22
~ ~J { 

~~ 
— e 2’

~

+ ~ j~
- 

~~~~~~~~~ 
(12)

Here 
~ 

is the same as in (9) should one take =

We observe again that both the line voltages and currents

are cross-coupled to the source I~~.

Again , for the matched case , i.e., ‘
~ 

= =

we have

\7( z)  =~~~~e Z~~~~~f

(13)
— 1 —vz —1(z) = — e  - I2 s

The arrangemen t in Figure 2 , for the ma tched case ,

exci tes pure current  modes and , hence , the line currents

are not cross—coupled to the driving current sources on

other lines . This is in exact duality to the matched

case disc ussed for the vol tage—driven  l ines .

14
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SECTION I I I

THREE-CONDUCTOR TRANSMISSION LINES--SPECIAL CASES

The study of a three—conductor transmission line

(including the reference conductor) is very important in

understanding the coupling mechanisms of multiconductor

transmission lines , particularly if the coupling between

conductors is weak. For weak coupling , the e f f e c t  of

coupling from other l ines can be obtained by using super-

positions of coupling from individual lines--i.e., super-

imposing the results of three-conductor transmission lines .

For a three—conductor transmission line , the per-

unit—length inductance matrix ~ and per-unit-length

capacitance matrix C can be written as

I L  Li l l  mL = 1  ( i 4 )

L’~m L 22

and

I c  -C 111 m (15)
L~~m 

C22 J

where the subscripts 11, 22 and m denote self-quantities

for lines 1 and 2, and the mutual quantities between

lines 1 and 2 , respectively . Condition (2) for homogeneous

media results in the following relations:

= = = V 2 (L ~~~ L22 
- L~ ) = 

V 2 (C11 C22 
- C 

(16)

L 

15
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To get an idea of the relative magnitudes of the mutual

• and self—quantities , the coupling coefficient k of two

identical circular cylinders of radius r, center-to—center

• separation 2a, and parallel to a ground p lane (which

serves as the reference conductor) at a height b (center-

to—ground plane) is evaluated . The coupling coefficient

is defined to be

C
k m (17)

/C11 C22

and is given by (ref. 5)

Zn [3.  ± (b/a) 2]

2 Zn (2b/r)

In Figure  3 , the coupl ing  c o e f f i c i e n t  is plotted versus

a/b for various b/r . For th is  c o n f i g u r a t i o n, i t  is

observed that the maximum value of k is 0.5 and occurs

when the two conductors are about touching each other and

also about touching the ground plane. When the conductors

are of different sizes , higher values of k are possible.

From (6) , the elements of the characteristic in-
pedance matrix are readily expressible in terms of the

~ and t elements. For

16
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I

— Iz z
~ = 1  ol om
° I

Lom 02

the individual impedance elements are

= C22/{v(C11 C22 
— C ) ]  = v

Z 2 = C11/[v(C11 C22 
- C 2 )] = v L22 (18)

2Zom = C /[v(C11 C22 
- 0m ~ = v

• We will first study two special cases analytically

and then present some numerical results.

1. Analytical Results

( a )  Matched Line

The expressions for line voltages and currents for

a voltage-source driven case are the same as (8), with

~ 
replaced by the 2\2 unity matrix U2 . Again , for

matched conditions at both ends , we obtain ~l O )  , which
a

are re—written here

IV 1(z) 1 
= ~ e - ~~ 

[V l 1 ( 19 )
Lv 2 z J  Lv

5 2  J

and

18
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. [:~::] = e~~~ C::: ::~J~[~]
Where subscripts 1 and 2 denote lines 1 and 2, respectively.

• • 

• 

Equat ions  (19)  s tate tha t  if V 52 = 0, then

1 -~(ZV1
(z ) = e V~ 1

V
2
(z) = 0

(20)

I1(z) = ~ e~~~
Z 
V51 Z02/(Z 1 

Z 2 — Z2 )

I2
(z) = — e~~~

Z V~ 1 
Zom/(Zo1 Z 2 

— Z~~~)

It is also possible to obtain (20) using c i r c u i t — a n a l y s i s

techniques.

The vo l t age—dr iven  matched three-conductor  t r ansmiss ion

line is shown in Figure 4a, and the circuit respresentation

(ref. 6) of the charac ter istic impedance ma trix

is shown in Figure 4b. The complete respresentation in

• circuit form of the matched transmission line at z 0

is shown in Figure 4c.

By circuit analysis , it is not difficult to show

that the loop currents of Figure 4c are as follows : 

_ _ __ . _1_
~~~~~

_ ___
~~~~~~~~~~~~~~~~~~_  

j
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_ s~+ L I N E I

LI NE 2

(a )

0 Z~~Z0~~Z0~ Z D~~ZO~ZQm©

0
I

( b )  

I 1
~~~~~ ’ LINE I  j

I ‘
~~~~~~~LINE 2 1

Z~~ Z~~ 
B 

I~~~Zb
_ _

~~Z~

_ _  

I

SOURCE M~ TCHEO LINE

( c )

Figure 4. (a) Voltage-driven matched three-conductor
transmission line , (b) Circuit represen— .
tation of characteristic impedance matrix 

~~( C )  C i r cu i t  r e p r e s e n t a t i o n  of matched
three—conductor transmission line .
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‘a = 4 V 1 
z 02 / ( z 01 Z02 - Z2 )

= 4 V 1 
(Z02 

- Z )/(Z 1 Z02 
— Z~~ )

The voltage of line 1 at z = 0, i.e., the voltage at

point A is given by

V1 ( 0 )  = ‘b Z + V 1 
— I (Z 1 

— Z )  4 Vs1
Similarly, the voltage of line 2 at z = 0, i.e. , at

point  B , is

V2 (0) = ‘b 
Zom — 

~~b 
— I )  (Z02 

— Z )  = 0

The line currents are given by

a 
11(0) ‘a 

= 4 ~~ 1 Z02/(Z01 Zo
2 

— Z2 )

• 12 (0) = ‘b 
— ‘a = - 4 V~ 1 Z / ( Z 1 

Z 2 
— Z

2 )

These results are identical to those of (20)

(b) Short-Circuit Loads

An interesting coupling property is observed for

the voltage—driven transmission line when all the source

21
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I
and load impedances are just short-circuits to the

reference conductor. Under these conditions , from (9),

it can readily be shown that

s 2

•
~~~ 1

and (8) becomes

V(z) = ~[e~~~ - e 
Z _ 2 Z )

] / ( 1 - e
2
~~~) }  

~~

The last equation indicates that the line voltages are

not cross-coupled to the drivinc voltace sources.

2. Numerical Results

Numerical results are obtained for the voltage—

driven transmission lines by evaluating (8) . Two se ts

of results are presen ted here : One shows the terminal

• voltages and currents as a function of the coupling co-

efficien t at a fixed frequency ; the other shows the same

quantities as a function of frequency for a f ixed coupling

coeff icient.

For all the cases studied here , the transmiss ion

lines are 1 meter long . The elements of the characteristic

22
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impedance matrix are Z01 = Z02 
= 50 Q . The source

and load impedances contain s imple resis tances and

R , , respectively , connecting the conductors to the

reference conductor , i.e., the off-diagonal elements of

and are zero . In the first set of results , the

frequency is chosen to be 100 MHZ ; in the second set , the

coupling coefficient k is chosen to be 0.1. We further

assume that there is only one voltage source with strength

1 volt driving line 1. The configuration is illustrated

in Figure 5.

In Figure 6, we have the case R5 = P . 5 0 2  at

f 100 M H z .  The vol tages and cur rents at z = 0 are

presented in Figure 6a. We observe the approximately

linear increase in the induced V 1 I on line 2 at low k.

In Figure 6b, the voltages at z = 
~ 

(=  l m ) are ~resented.

The vanishingly small induced voltage on line 2 at low k

makes this configuration to be used as direc tional couplers

(ref. 7 ) .  The currents at z = Q are simoly related

to the respective voltages by the resistances and are
•

not presented.

In Fi gure 7 , we presen t the case that R5 50 ~

and R = 100 7~. The induced voltace on line 2 at

z = ?. is considerably hiqher than the previous case. 
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Figure 5. Three—con ductor transmission line
conftq urations for numerical studies.

24

---

~

-— ~~~~~~~~~~~~~~ • - ---— -~~~~—--.- -~~ --



- - —.- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~—-——.—- •

:: 
_ _ _ _ _

03 - 

-
— 0

- ,~~LINE 2 

— —

/ -.~~.. c . _

0_ I - 
/

0 ’ I — I I
0 0.2 0.4 0.~ 0.8 1.0 0 0.2 0.4 0 ~ 09  .0

k k

( a )

LINE 2,/
a 0. 1 - /

0 I
a 0 0.2 0.4 06 09 .0

(b)
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- In Figure 8 , the voltages and currents are presented
- .  as a function of frequency for k = 0.1. Again , we

have R
5 

= 50 2 and R, = 100 ~~~~. It is clearly shown

that the relative induced voltages vary with freauency.

-1: -

t
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(b) Voltages at z= -~..

28 

—~~~~~~-—~~~- -- - - - -  -- -~~~~ - -- -



- - —

SECTIO N IV

EQUIVALENT GENERATORS REPRESENTATION OF CROSS-COUPLING

In this section we discuss the representation of

the effect of voltages and currents of one line on

another line by discrete equivalent voltage and current

generators on the second line.

The rigorous approach is to solve the set of

differential equations Cl ) and cast the solutions of

the vol tages and currents  on one l ine  in the same form

as those of a s ingle  line containing discrete genera tors.

However , the solutions of (1) are much too complicated

for this purpose and s implifying assump tions mus t be

made .

To s implif y the problem , we assume tha t  the induced

line voltages and currents are small so that their effects

on the exc i t ing  l ine are n e g l i g i b l e .  This  assumpt ion

demands tha t  the coup l ing between the two l ines  is

weak . Later in this  section , the accuracy  of t h i s

assumpt ion  wi l l  be examined .

Under the assumption of weak coupling , it is

sufficient to investigate only three-conductor trans-

mission lines. For more than three conductors , the

principle of superposition -applies.

I.
29
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1. Formulation

For a loosely coupled three-conductor transmission

line with both ends terminated in simple impedances , as

in Figure 9 , under the assumption made above , (1) can

be re—written as

d V1(z)

dz + sL11I1(z) ~ 0

(21)
d I1 (z)

dz + sC 11V1(z) ~ 0

d V2
(z)

- 

dz + sL22 I2 (z) = — s L
m I1(z) (22a)

d I 2 (z)

dz + S C22 V2 (z) = S Cm V1(z) (22b)

Equations (21 ) indicate that line 1 is not influenced by

line 2 , as assumed . However , (2 2 )  sta te tha t  l ine  2

a is influenced by two sources due to voltages and currents

on line 1. When compared with the equations of a transmis-

• sion line excited by external fields (ref. 3), the r i c h t —

hand-side of (22a) can be represented by an electric

field- E
e

(z ) and tha t  of (2 2 b ) by a magne tic f i e l d

H (z), i.e.,

— 
30
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Figure 9. Three—conductor transmission line
terminated in simple impedances.
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d V2 (z)

dz + sL 22 I2 (z) = Ee (z) = SL I
1
(z)

(23)
d I2 (z)

: dz + sC 22V2 (z) = He (z) = SC V
1 (z) . 

a

Equations (23) state that line 2 is excited by electric

and magnetic fields maintained along the conductors. These

fields are equivalent to a continuous distribution of voltace

and current generators (ref. 8) . Equations (23~ can

be solved by first obtaining the Green ’ s function (i.e.,

due to point generators ) and then integratinc the fields

to obtain their total contributions .

For a pair of point voltage generators 7/2 and

a po int current generator I at z = ~ 
, as depicted in

Figure 10, the line voltage and current are given by:

for ~~~~~
(z—2 Z)

V(z) = 

e + 
~~~ 

e 

— 2’(~ ~~~ (e~~ 
— 0s2 e ~)1 — 

~s2 012 e

+ Z
2 

1 (e~~’ + 
~s2 e

a — -iz y ( z — 2 ~ )
1(z) = 

2 {v (e’~~ 
- 

°s2 e )

+ Z 2 1 Ce + c~~2 e~~~~)]

(24)

p.. 
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Figure 10. A pair of voltage cenerators V./2
and a current cenera tor I~ at
z=~~. 
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for ~~~~~

e
’
~~~~~~ +

V(z) = 4 —2y~ (V [e
2
~~~ - 

~z2 e~~~~~~~~]
‘ s2 °12 e

+ z 2 i~ [e~~~~~~ + 3 -Z2 e~~~~~~~~])

y(z—~ ) ((Z+fl

1(z) = 2 Zo2 - C s2 p e ~~~ 
(—~ [e~~~~~~ — c- 12 e

’
~~~~~~]

+ ~~ [e~~~~~~ ÷ °Z 2 e 
(~

_
~)]) (25)

Here , Z
02 is the characteristic impedance of line 2 in

the presence of the loosely coupl ed l i n e .  The r e f l e ction

coefficients are given by

z — zs2 o2

s2 o2

z -  — z
‘2 o2

a 0 2 
= Z , ± Z

o2

For line 1 coupled to line 2 from z = h—d to

z = h+d , as illustrated in Figure 9, we obtain

34
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I
for z~~~~h+d

— y z  ‘ r ( z — 2 Z ) h+d

V2
(Z) = 

~ 
e + :12 : 

e
2’~ Jd 

e~~~ 
(e~~ 

- 

~s2 e

+ z 2 H (~~) (e~~ + p 52 e~~~ ) ] d~

—yz ‘r(z-21) h+d

12
(z) = 2 Z 2 

e 

— 

p
12 e J ~~ 

(e’~’ — 

~ s2 e~~~~)
- s2 p 12 e h—d

+ Z 2 
H (~~) (e

’
~~ + p 52 e

’
~~ ) ] d~ (2 6)

Making use of definitions (23 ) for E
e 

and He and also

~1~~) so that  Lm I~~~/C~ Z 2 
V~ = 1 for  forward  t r ave l l i ng

waves on line 1, and Lm I1 /C z 2 V~ = -l for back-

ward travelling waves , then (26) become

e
_YZ 

+ p e~~~~~
2
~~ c

V2
(z)  = 

2 2  
—2-- ~~ s inh (2 y d )

1 — 052 
p
22 e 22

.4

x {~~~2 V~ e 2’
~~ + v~ e2’

~~]

e ’
~~ 

— p e~~~~~
2
~~ C

I (z) = 
i ~2 

—2~- - s i n h (2 -d )
2 02 1 — p 52 ~Z2 e ~ 22

x 
{° 2 

V~ ~~~ + V~ e2 h J  z ~~~+a ( 2 7 )

--~~~•- -— _ •~~~~~~~ 



7i~~ I~~~
_ _ _rwww , - - ~~~~~~~~~~~~~~~~ 

.t___ —
~~~~~~~~~ - - ~7’~~

____
~

____~—.-- -

Similar expressions are derived for z ~ h-d :

e~~~~~
9
~ + p ~~~~~~~~ C

V~~(z) 
s2 

— 
~~~~~~ sinh(2~ d)

1 — p  p -~ e C22s2 1.2

{ V~~ e~ 
(Z-2h) 

+ p 2 2  V
~ e (Z-2h)1

— p ~~~~~~~~ C
12 (z )  = 

1 s2 —a sinh (2~çd)
o2 l — o  .~~~. e - - 22s2 ~.2

[~~1~ e~~~~~
2
~~ + c

~~2 V
1 e

(Z_2
~~~J

z ~ h—d (28)

Equations (27) and (28) can also be obtained by

olacing appropriate  discrete generators  on line 2 to

• represent the effect of couplinc . A f e~- possible represen—

tations are shown in Figure 11. In Figure i la , two pairs

of generators of oppos ite signs are placed at z = h—d and

z = h+d with total magnitude

V = (C /C 22 )cosh(-1 d) (V e
_ h  

V~~ e h ) (29)

31S

~

- . - - ~~-.-~~~ - —~~~~~~~~~~ — -_ •-~~~~~~~~~~~ -~~-— . - -~~~ - - - — - •



. — —V ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
_-__ ..-__._.....-__-.-,-

~~~ 
•
~~~~~

• __lIII

1

‘i~/2 Vb
/2 v0/2

zsz E~1

~I~I2 Vb /2

~0~

z=O z=h _ d z=h z=h— d

(a )
y
b
!2

T
o

Z~~ IC~~~ 
Z~ 2

~
db f2

zrO z h  • 
z~2

(b)

V0/2 v0/2

~- 
r0 I ~

V / 2  V0/2
• ‘~o~z~~0

(8)

Ficure 11. Three possible equivalent cenerator
r ep r e sen t a t i ons  of cro ss— cou ~ 1inq:
(a ) three -:oltage generators ,
( h )  one voltace and one c u r r e n t

cenerators , and
(c) t~ o voltage and t~-;o current

-

— 
ger .erat or s .
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and another pair of volte~ e ~enerazors is located at

z = h with magnitude

Vb 
= (C /C22 )sinh(2--d ) (-yr ~~~~ + y~ e~~~) (30)

An alternate represen tation is to re p lace the two pairs of

generators at z h-d and z = h+d by a current generator

at z = h , as shown in Figure lib. The magnitude of the

current  generator is given by

= C / (C 72 Z 2 ) sinh (2 .d) (V~ e Th + V~~ e ’~~ (3 1 )

• Another possible representation is to  re~ 1ace the center

voltage gen ~ator at z = h of Figure ila by two current

generators of equal magnitude and oPposite phase at z = h-f

and z = h÷d , as shown in Figure llc. The magnitude of the

current sources is

a 
‘d = Cm/ ( C 2 2 Z 2

) cosh (~ d)(-V~ e 
h 

+ vI e~ h ) ( 3 2 )

In (27) to (32), the volta~ es and currents , or

equivalently , the s t rength  of the ecu ivaler .t generators on

line 2 , depend on the macnitufeof the forward and backward

tra’;ellinc waves on line 1, V~ and V1 . These t~-o

quantities are easily calculated for the uncerturbed line 1

for a civen excitation .

33
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A cor~r n en t  on the causality of the equivalent generator

recresentetions should be made here. As line 1 directly —

~:o:~~-~s line 2 at z = h-d and z = h-~-d , for a transient

ex:~ :ao~ on , energy should start propagating on line 2

iron these two Points. Thus , the representation of Figure

l l o , with all generators at these two points , illustrates

this effect and is a causal representation. The represen-

tations of Figures h a  and llb requiring some time delay

f o r  t i m e  domain representa t ion are thus not causa l .

I’ 
Another  equiva len t  genera tor  r ep resen ta t ion  of the

e f f e c t  of l ine  1 on l ine  2 has  been suggested by Boeing

recen t ly  ( r e f .  9 )  . Equivalent vol tage  gene ra to r s  ar e  claced

on line 2 at positions where line 1 has discontinu~ ties

with strength being proportional to the line voltage at

that point on line 1. This is illustrated in Figure 12.

For the two discontinuities of Figure 12a , the voltage

genera tors  have s t r e n g t h

= K

a 
(33)

V B 
= K V

1
(~~8

)

and have opposite p o l a r i t i e s .  Here , K is an en c i r i c a l

constant measured in experiments, 
~~~~~~ 

is the line

voltage on line 1 at position A. -
‘

39

A =—•--_--- - -~~~~—-- -—-—————•—- - -
-•----- -_- -• --- --‘--—— - —  ——-— --•--—- — ------- - —--- - - - - 

-



L I N E  2

~~~~~ 
LINE I 

~~~ 11 ~~z~2

I z=0 z=h—d z=h÷d Z L

(a)

I

t
’

-

~~~ 
VA VB

~0~ 3
+

- . 

Z
~2~~ 0Z L2

1- II

• (b )

Figure 12. Two voltage generator representation
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line 1 on l i ne  2 .
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I,

The line voltages and currents for line 2 due

to the two voltage genera tors (see Figur e l2b) can be

readily evaluated ; the voltage is given by

Y (Z 22)

V2
(z) = 

1 
e + C 12  e 

~~~~ [e’~h 
(~~~~~~~ e~~~ + V B 

e )
1 — p

52 ‘
~i2 

e

--f
- C

2 
e (_ V

A 
e + V B e

z ~~h4-d 
(34)

Decomposing V1 
into forward and backward travelling

waves wi th magn i tude V1~ 
and V 1 

, r e spec t ive ly,  substi-

tution of (33~ into (34) yields ,

- 
( z — 2 f l

e 2 e + —2 - -h ~~~
-

V2 (z) = 

1 - 
2 c ) 2  e~~~~~ 

K s i n h ( 2- - d )  [0 2 V
1 

e 
- 

+V , e~

z ~~h+d . (35)

Comparison with (27) shows that

K = C / C 22
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The two—voltage generator representation with

and V
5 at z = h-d and z = h+d , respectively, is a

causal representation.

In Table I, all  the fou r  representat ions (F igures 11

and 12) are summar ize d .

2 . Comparison with Exac t Theory

By compar ing the results obtained by evalua ting the

appropr ia te  solut ion (27 ) with that  by eval ua ting (8) , it
is possible to see how good the assumpt ions  are in der iving

(27 ) . Ideally one expands (8) in terms of a series in the

coupling coefficient k and observes the errors when

higher order k terms are dropped. However , such an

V analytical task is far too involved even for a three-

conductor transm iss ion line. Numerical compar isons are

-Csed .

We use the same li ne parame ters as those used in

Section 111.2. Here we compare the induced voltages on

• line 2 as a function of the coupling coefficient k at

100 ~Hz. In Figure 13a , the case R
5 

= = 50 is

pre sented and in Figure l3b , the case R
~ 

= 50 and

F. = 100 2 . We observe that the approximate theory is

cood up to k ~~0 . 5 .

42
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Figure 13. Comparisons of exact and approximate results. -
(a) R5 = R = 5 0T- , and (b) R5 =~~O~ and R~~= l00•~.
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SF.CTION V

CONCLUSIONS

The coupling between conductors for a mu l t i -

conductor transmission li ne immersed in a homogeneous

medium have been studied. The special case of a three—

conductor transmiss ion line has been inves tigated in detail.

It has been shown that for small coupling the effect of

energy of one line on another can be represented by some

discrete equivalent generators on the induced line r three

voltage generators ;  one voltage generator and one current

generator; two voltage generators and two current cenerators ,

or two voltage generators .

For a multiconductor transmission line in an in-

homogeneous medium , the responses will be different to

those described in this report. It is expected that the

small coupling theory will not be adequate if the dif-

ferences in the mode velocities are large . This may

indeed be a wor thwhile problem to inves tiga te.

•

I

‘~
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